NVIDIA RTX A4500 NVIDIA RTX A4500
  • Ampere GPU architecture
  • 7,168 NVIDIA® CUDA® Cores
  • 224 NVIDIA® Tensor Cores
  • 56 NVIDIA® RT Cores
  • 20GB GDDR6 Memory with ECC
  • Up to 640GB/s Memory Bandwidth
  • Max. Power Consumption: 200W
  • Graphics Bus: PCI-E 4.0 x16
  • Thermal Solution: Active
  • Display Connectors: DP 1.4 (4)
  • Frame Lock: Compatible with Quadro Sync II
  • NVLink: 2-way low profile (2-slot and 3-slot bridges)
S000384 Leadtek Quadro 0 VND Số lượng: 1000 cái

NVIDIA RTX A4500

  • Mã sản phẩm: S000384
  • Giá bán: 0 VND

    • Ampere GPU architecture
    • 7,168 NVIDIA® CUDA® Cores
    • 224 NVIDIA® Tensor Cores
    • 56 NVIDIA® RT Cores
    • 20GB GDDR6 Memory with ECC
    • Up to 640GB/s Memory Bandwidth
    • Max. Power Consumption: 200W
    • Graphics Bus: PCI-E 4.0 x16
    • Thermal Solution: Active
    • Display Connectors: DP 1.4 (4)
    • Frame Lock: Compatible with Quadro Sync II
    • NVLink: 2-way low profile (2-slot and 3-slot bridges)


  •  

Powerful Performance for Professionals

With the introduction of the NVIDIA Ampere architecture, we brought the next generation of NVIDIA RTX to millions of professionals. Featuring enhanced real-time ray tracing, accelerated AI, and advanced graphics and compute capabilities, the NVIDIA Ampere architecture enables artists, designers, engineers, and scientists to create tomorrow, today. And as the adoption of RTX technology continues to grow, with over 70 of the world's leading professional applications now accelerated by RTX technology, professionals are empowered to design, build, and entertain unlike ever before.

The NVIDIA RTX A4500 delivers the power, performance, capabilities, and reliability professionals need to do more. Powered by latest generation of NVIDIA RTX technology, combined with 20 GB of ultra-fast GPU memory, The A4500 provides amazing performance with your favorite applications and the capability to work with larger models, renders, datasets, and scenes with higher fidelity and greater interactivity, taking your work to the next level.

Performance Features

NVIDIA Ampere Architecture

NVIDIA RTX A4500 workstation GPU offers high performance real-time ray tracing, AI-accelerated compute, and professional graphics rendering within an optimized power envelope. Building upon the major SM enhancements from the Turing GPU, the NVIDIA Ampere architecture enhances ray tracing operations, tensor matrix operations, and concurrent executions of FP32 and INT32 operations.

CUDA Cores

The NVIDIA Ampere architecture-based CUDA cores bring up to 2X the single-precision floating point (FP32) throughput compared to the previous generation CUDA Cores, providing significant performance improvements for graphics workflows such as 3D model development and compute for workloads such as desktop simulation for computer-aided engineering (CAE). The RTX A4500 enables two FP32 primary data paths, doubling the peak FP32 operations.

2nd Generation RT Cores

Incorporating 2nd generation ray tracing engines, NVIDIA Ampere architecture-based GPUs provide incredible ray traced rendering performance. A single RTX A4500 board can render complex professional models with physically accurate shadows, reflections, and refractions to empower users with instant insight. Working in concert with applications leveraging APIs such as NVIDIA OptiX, Microsoft DXR and Vulkan ray tracing, systems based on the RTX A4500 will power truly interactive design workflows to provide immediate feedback for unprecedented levels of productivity. This latest generation of RT Cores is up to 2X faster in ray tracing compared to the previous generation. This technology also speeds up the rendering of ray-traced motion blur for faster results with greater visual accuracy.

3rd Generation Tensor Cores

Purpose-built for deep learning matrix arithmetic at the heart of neural network training and inferencing functions, the RTX A4500 includes enhanced Tensor Cores that accelerate more datatypes, and includes a new Fine-Grained Structured Sparsity feature that delivers up to 2X throughput for tensor matrix operations compared to the previous generation Tensor Cores. New Tensor Cores will accelerate two new TF32 and BFloat16 precision modes. Independent floating-point and integer data paths allow more efficient execution of workloads using a mix of computation and addressing calculations.

PCIe Gen 4

The RTX A4500 supports PCI Express Gen 4, which provides double the bandwidth of PCIe Gen 3, improving data-transfer speeds from CPU memory for data-intensive tasks like AI and data science.

Higher Speed GDDR6 Memory

Built with 20GB GDDR6 memory, the RTX A4500 delivers the memory throughput required for memory intensive tasks such as ray tracing, rendering, and AI workloads. The RTX A4500 provides large graphics memory to address the larger datasets and models in latency-sensitive professional applications.

Error Correcting Code (ECC) on Graphics Memory

Meet strict data integrity requirements for mission critical applications with uncompromised computing accuracy and reliability for workstations.

5th Generation NVDEC Engine1

NVDEC is well suited for transcoding and video playback applications for real-time decoding. The following video codecs are supported for hardware-accelerated decoding: MPEG-2, VC-1, H.264 (AVCHD), H.265 (HEVC), VP8, VP9, and AV1.

7th Generation NVENC Engine

NVENC can take on the most demanding 4K or 8K video encoding tasks to free up the graphics engine and the CPU for other operations. The RTX A4500 provides better encoding quality than software-based x264 encoders.

Graphics Preemption

Pixel-level preemption provides more granular control to better support time-sensitive tasks such as VR motion tracking.

Compute Preemption

Preemption at the instruction-level provides finer grain control over compute tasks to prevent long-running applications from either monopolizing system resources or timing out.

NVIDIA RTX IO

Accelerating GPU-based lossless decompression performance by up to 100x and 20x lower CPU utilization compared to traditional storage APIs using Microsoft’s new DirectStorage for Windows API. RTX IO moves data from the storage to the GPU in a more efficient, compressed form, and improving I/O performance.

Multi-GPU Technology

3rd Generation NVLinkii

Connect two RTX A4500 cards with NVLink to double the effective memory footprint and scale application performance by enabling GPU-to-GPU data transfers at rates up to 112.5 GB/s (total bandwidth).

NVIDIA® SLI® Technology

Leverage multiple GPUs to dynamically scale graphics performance, enhance image quality, expand display real estate, and assemble a fully virtualized system.


Display Features

NVIDIA® Quadro® Mosaic Technology

Transparently scale the desktop and applications across up to 4 GPUs and 16 displays from a single workstation while delivering full performance and image quality.


DisplayPort 1.4a

Support up to four 5K monitors @ 60Hz, or dual 8K displays @ 60Hz per card. The RTX A4500 supports HDR color for 4K @ 60Hz for 10/12b HEVC decode and up to 4K @ 60Hz for 10b HEVC encode. Each DisplayPort connector can drive ultra-high resolutions of 4096x2160 @ 120 Hz with 30-bit color.

NVIDIA® RTX™ Desktop Manageriii

Gain unprecedented end-user control of the desktop experience for increased productivity in single large display or multi-display environments, especially in the current age of large, widescreen displays.

NVIDIA® Quadro Sync IIiv

Synchronize the display and image output of up to 32 displays[iii] from 8 GPUs (connected through two Sync II boards) in a single system, reducing the number of machines needed to create an advanced video visualization environment.

Frame Lock Connector Latch

Each frame lock connector is designed with a self-locking retention mechanism to secure its connection with the frame lock cable to provide robust connectivity and maximum productivity.

OpenGL Quad Buffered Stereo Support

Provide a smooth and immersive 3D Stereo experience for professional applications.

Ultra-High-Resolution Desktop Support

Get more Mosaic topology choices with high resolution displays devices with a 32K Max desktop size.

Professional 3D Stereo Synchronization

Robust control of stereo effects through a dedicated connection to directly synchronize 3D stereo hardware to a Quadro graphics card.


Software Support

NVIDIA® RTX™ Experienceiv

NVIDIA RTX Experience delivers a suite of productivity tools to your desktop workstation, including desktop recording in up to 8K, automatic alerts for the latest NVIDIA RTX Enterprise driver updates, and access gaming features. The application is available for download here

Software Optimized for AI

Deep learning frameworks such as Caffe2, MXNet, CNTK, TensorFlow, and others deliver dramatically faster training times and higher multi-node training performance. GPU accelerated libraries such as cuDNN, cuBLAS, and TensorRT delivers higher performance for both deep learning inference and High-Performance Computing (HPC) applications.

NVIDIA® CUDA® Parallel Computing Platform

Natively execute standard programming languages like C/C++ and Fortran, and APIs such as OpenCL, OpenACC and Direct Compute to accelerates techniques such as ray tracing, video and image processing, and computation fluid dynamics.

Unified Memory

A single, seamless 49-bit virtual address space allows for the transparent migration of data between the full allocation of CPU and GPU memory.

NVIDIA® GPUDirect for Video

GPUDirect for Video speeds communication between the GPU and video I/O devices by avoiding unnecessary system memory copies and CPU overhead.

NVIDIA Enterprise-Management Tools

Maximize system uptime, seamlessly manage wide-scale deployments and remotely control graphics and display settings for efficient operations.

i This feature requires implementation by software applications, and it is not a stand-alone utility. Please contact quadrohelp@nvidia.com for details on availability.
ii Application must be aware of and be optimized for NVLink to take advantage of this capability.
iii Product formerly known as NVIDIA Quadro View has undergone a brand transition.
iv Feature supported in future driver release.

Specifications

GPU Architecture NVIDIA Ampere Architecture
CUDA Parallel Processing cores 7,168
NVIDIA Tensor Cores 224
NVIDIA RT Cores 56
Single-Precision Performance 23.7 TFLOPS
RT Core Performance 46.2 TFLOPS
Tensor Performance 189.2 TFLOPS
Frame Buffer Memory 20 GB GDDR6 with ECC
Memory Interface 320-bit
Memory Bandwidth 640 GB/s
Max Power Consumption 200 W
Graphics Bus PCI Express 4.0 x 16
Display Connectors DP 1.4 (4)3
Form Factor 4.4" H x 10.5" L Dual Slot
Product Weight 1.025 kg
Thermal Solution Active
Power Connector 1x 8-pin PCle
Frame lock Compatible (with Quadro Sync II)
NVLink Interconnect 112.5 GB/s (bidirectional)
NVENC︱NVDEC 1x ︱ 1x (+AV1 decode)
     

 

Bạn đã không sử dụng Site, Bấm vào đây để duy trì trạng thái đăng nhập. Thời gian chờ: 60 giây